Facile Preparation of Transparent Monolithic Titania Gels Utilizing a Chelating Ligand and Mineral Salts

نویسندگان

  • Joji Hasegawa
  • Kazuyoshi Kanamori
  • Kazuki Nakanishi
  • Teiichi Hanada
چکیده

Highly homogeneous transparent titania gels have been successfully prepared from titanium alkoxide by a sol–gel method utilizing chelating agent, ethyl acetylacetate (EtAcAc), in the presence of strong acid anions. Only catalytic amount of a strong acid anion suppress the rapid hydrolysis of titanium alkoxide by blocking the nucleophilic attack of HO and H2O, and the resultant moderate sol–gel reactions thus afford homogeneous gelation, leading to transparent monolithic titania gels. Gelation time can be widely controlled by changing amounts of water, chelating agent and salt. The ability of salts to suppress the too abrupt sol–gel reactions is strongly dependent on the electronegativity of anions and valence of cations. With employing NH4NO3 as a suppressing electrolyte, the obtained titania gels can be converted to pure TiO2 by simple washing and heat-treatment, and transformations to anatase and rutile structures were found to start at 400 and 600 °C, respectively.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preparation of polyacrylonitrile – titania electrospun nanofiber and its photocatalytic dye degradation ability

In this paper, polyacrylonitrile PAN - titania TiO2 electrospun nanofiber PAN/TiO2 nanofiber was prepared via a facile electrospinning method. The characteristics of the PAN/TiO2 nanofiber were investigated using SEM and FTIR. The nanofiber showed retained nanofiber structures and high photocatalytic efficiency under UV light for the degradation of Direct Red 80 DR80 and Direct Red 23 DR23 in w...

متن کامل

Synthesis of a SiO2/TiO2 hybrid boronate affinity monolithic column for specific capture of glycoproteins under neutral conditions.

A unique boronate-functionalized SiO2/TiO2 hybrid monolithic column was synthesized by a facile approach. Although a conventional boronic acid, 4-vinylphenylboronic acid, was used as the affinity ligand, the prepared monolithic column exhibited specific capacity to capture glycoproteins including antibodies in aqueous solution at neutral pH. With the incorporation of titania, the monolith was h...

متن کامل

Preparation of Γ-alumina from Aluminum Aminoalkoxides

The synthesis of materials with tailored properties is one of the most active areas of material science [1, 2]. Among so many materials, γ-alumina due to the significant application in catalysis, electronic and ceramic industry has been studied extensively [3]. Various processes have been employed for the preparation of high quality alumina, including sol-gel processing from aluminum alkoxides....

متن کامل

Facile Fabrication of Boron-Doped Titania Nanopowders by Atmospheric Pressure Chemical Vapor Synthesis Route and its Photocatalytic Activity

The Atmospheric Pressure Chemical Vapor Synthesis (APCVS) route is a process that can be used for the synthesis of doped-nanocrystalline powders with very small crystallite sizes having a narrow particle size distribution and high purity. In this study, APCVS technique was used to prepare boron-doped titania nanopowders. The effects of temperature, borate flow rate and water flow rate on the am...

متن کامل

Gyroidal mesoporous multifunctional nanocomposites via atomic layer deposition.

We demonstrate the preparation of rationally designed, multifunctional, monolithic and periodically ordered mesoporous core-shell nanocomposites with tunable structural characteristics. Three-dimensionally (3D) co-continuous gyroidal mesoporous polymer monoliths are fabricated from a solution-based triblock terpolymer-resol co-assembly and used as the functional templates for the fabrication of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017